Electron transfer from Phanerochaete chrysosporium cellobiose oxidase to equine cytochrome c and Pseudomonas aeruginosa cytochrome c-551.

نویسندگان

  • M S Rogers
  • G D Jones
  • G Antonini
  • M T Wilson
  • M Brunori
چکیده

The electron-transfer reactions of cellobiose oxidase (CBO) have been investigated by conventional and by rapid-scan stopped-flow spectroscopy at pH 6.0. Analysis of the absorbance/time/wavelength matrix by Singular Value Decomposition (SVD) confirms earlier studies showing that cellobiose rapidly reduces the flavin group (7.7 s-1; cellobiose, 100 microM) which in turn slowly (0.2 s-1) reduces the cytochrome b moiety. In the presence of CBO, cellobiose reduces cytochromes c in a reaction that does not depend on oxygen or superoxide. The rate limit for this process is independent of the source of the cytochromes c and is identical with the rate of cytochrome b reduction. Rapid-mixing experiments show that cytochrome b may donate electrons very rapidly to either mammalian cytochrome c or bacterial cytochrome c-551. The reactions were second-order (kc = 1.75 x 10(7) M-1 x s-1; kc-551 = 4.3 x 10(6) M-1 x s-1; pH 6.0, 21 degrees C and I0.064) and strongly ionic-strength (I)-dependent: kc decreasing with I and kc-551 increasing with I. These results suggest the electron-transfer site near cytochrome b bears a significant negative charge. Equilibrium gel chromatography confirms that CBO oxidase and positively charged mammalian cytochrome c make stable complexes. These results are discussed in terms of a model suggesting an electron-transfer role for cytochrome b in vivo, possibly connected with radical-mediated cellulose breakdown.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The electron-transfer reaction between azurin and the cytochrome c oxidase from Pseudomonas aeruginosa.

A stopped-flow investigation of the electron-transfer reaction between oxidized azurin and reduced Pseudomonas aeruginosa cytochrome c-551 oxidase and between reduced azurin and oxidized Ps. aeruginosa cytochrome c-551 oxidase was performed. Electrons leave and enter the oxidase molecule via its haem c component, with the oxidation and reduction of the haem d1 occurring by internal electron tra...

متن کامل

Characterization of a cellobiose dehydrogenase from Humicola insolens.

The major cellobiose dehydrogenase (oxidase) (CBDH) secreted by the soft-rot thermophilic fungus Humicola insolens during growth on cellulose has been isolated and purified. It was shown to be a haemoflavoprotein with a molecular weight of 92 kDa and a pI of 4.0, capable of oxidizing the anomeric carbon of cellobiose, soluble cellooligosaccharides, lactose, xylobiose and maltose. Possible elect...

متن کامل

Influence of cellobiose oxidase on peroxidases from Phanerochaete chrysosporium.

Reduction of H2O2-oxidized manganese peroxidase (MnP), lignin peroxidase and, to some extent, horseradish peroxidase, was studied in the presence of cellobiose oxidase (CbO) and cellobiose. It was found that the reversion rates for MnP compound II and lignin peroxidase compound II back to native enzymes increased significantly in the presence of CbO and cellobiose. However, the reduction of cyt...

متن کامل

Expression and characterization of Pseudomonas aeruginosa cytochrome c-551 and two site-directed mutants: role of tryptophan 56 in the modulation of redox properties.

The gene coding for Pseudomonas aeruginosa cytochrome c-551 was expressed in Pseudomonas putida under aerobic conditions, using two different expression vectors; the more efficient proved to be pNM185, induced by m-toluate. Mature holo-(cytochrome c-551) was produced in high yield by this expression system, and was purified to homogeneity. Comparison of the recombinant wild-type protein with th...

متن کامل

Respiratory pathways and oxygen toxicity in Phanerochaete chrysosporium.

Phanerochaete chrysosporium maintained on glucose as the carbon source contained severely impaired mitochondria that were characterised by the loss of both succinate dehydrogenase and cytochrome oxidase activities. These cells maintained a constant value for energy charge using anaerobic metabolism. Cells with these properties express lignin peroxidase when supplied with a pure oxygen atmospher...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 298 ( Pt 2)  شماره 

صفحات  -

تاریخ انتشار 1994